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Abstract. The regularized non-Abelian chiral Jacobian factor in the path-integral formula- 
tion of fermions interacting with background vector and axial vector fields is investigated 
at finite temperature in arbitrary even dimensions. After separating out the terms with 
normal parity, it is shown that the self-consistent non-Abelian chiral Jacobian is the same 
at T=O and TZO. 

It is well known that the current anomaly of a quantized fermion field with gauge 
coupling is connected with the ultraviolet properties of the theory, and it is expected 
that the formal result of an anomaly should be the same at T=O and T Z O .  The 
temperature independence of an anomaly was first noticed by Dolan and Jackiw (1974) 
in their pioneering work on the symmetry behaviour of field theories at finite tem- 
perature, They showed that the vacuum-polarization tensor of two-dimensional Q E D  

at finite temperature coincides with the one at zero temperature and that the mass of 
the gauge boson does not change with temperature T. The same conclusion was also 
reached later in four-dimensional QCD by observing that the finite-temperature correc- 
tions to the axial vector divergence of the real-time three-point Green function vanishes 
to all orders (Itoyama and Mueller 1983). The non-perturbative proof of the temperature 
independence of the anomaly was also given by some authors. In the context of Q E D ~  

the methods of C-function regularization (Reuter and Dittrich 1985) and the derivative 
expansion (Das afid Karev 1987) have been used within the path-integral formalism. 
Recently, Liu and Ni (1988) also made a proof for the four-dimensional Abelian chiral 
anomaly in this formalism, but they failed to generalize their proof to the non-Abelian 
case, especially with axial gauge coupling. 

In this paper, we are going to illustrate that in order to generalize the proof of the 
temperature independence of the non-Abelian chiral anomaly in the path-integral 
framework, the exponential of the Jacobian factor induced by an infinitesimal chiral 
rotation must be divided into real and imaginary parts; after regularization only the 
imaginary part yields a finite self-consistent result with abnormal parity which we can 
prove to be temperature independent, while the real part yields terms with normal 
parity which are regularization parameter dependent and also temperature dependent, 
but these terms can be cancelled out by adding counterterms to the original Lagrangian, 

In order to make our proof more simple and straightforward, we start by recapitulat- 
ing the derivation of the regularized non-Abelian chiral Jacobian factor at zero tem- 
perature. The generating functional for fermion fields interacting with background 
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gauge fields including yzntl coupling defined in 2n-dimensional Euclidean space is 

Z( V, A) = I d$ d+  exp (-1 dZnx $ i0+)  (1) 

where i 0  is the Dirac operator 

i D  = ifDp = iy'(3p + Vp + Y ~ , , + ~ A ~ )  

Vp =iVpQTa Ap = iApQTa 

with Y ~ ~ + ~  = i ny lyz . .  . yzn, {yr, yy} = 26pv and T o  are the Hermitian generators of 
group U(N) ;  Vp,, Apa are the real background fields. Following Fujikawa's (1985) 
prescription, one expands + and $ in terms of Grassmann variables a,, and F :  

(I, = c a n 4 n  4 = c d F  

(914, =A,+"  (iD)+Vfl = A ; %  

where 4, and cp', are the separate right and left eigenfunctions of i 0  

with the normalization 

d2"x cp',C#J, = a,,,,,. I 
I 

The action, therefore, simplifies to 

d2"x Q : ~ ~ C # J ,  = &unA,. 

Note that A, should be considered as a complex number. Interpreting the fermion 
measure d 4  d+  as ll d z  dun, the generating functional (1) becomes 

Z( V, A) = Det i D = n  A,,. (2) 
Under a chiral transformation specified by an infinitesimal real local function (Y (x)  = 

(Ya (x)  T", 

+-, +'=exP(iaY,,+,fY J +  $'= (cl exp(iay,,+,) 
the Jacobian factor of the non-invariant path-integral measure can be expressed as the 
ratio of two determinants, 

Det iD' ll A; J - '  = exp(i6r) = - - - 
Det iD -l7 A, (3) 

where 

iD'=iD+{iay, .+, ,  i@}+O(a2) .  

Letting 6A = A ' -  A, and treating 6(i@) = { i ( ~ y ~ , , + ~ ,  i@} as a perturbation, one has 

SA = dxcp;S(iD)+,, =i2A, dx(cp~cyy2,,+,+,) (4) I I 
and 

dx(cp~ay,,,+,C#J,). 

It is easy to check that the expression ( 5 )  is also applicable to the zero modes: this 
can be realized by introducing an infinitesimal term E Y ~ , , + ~  into the Dirac operator at 
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the very beginning and taking the limit E +. 0 (Wang and Ni 1987). Therefore, 6r in 
(3)  is 

6r=C 66, = 2 C  d2nx((pf,ay2n+l&,).  ( 6 )  
m m I 

This implies that the exponential of the Jacobian factor can be understood as the 
accumulated effect of a dilation and of an argument change of all the diagonal elements 
A, induced by an infinitesimal chiral rotation. In the special case of A = 0, as discussed 
by Liu and Ni (1988), the Dirac operator iD is Hermitian, (p, = c$,, 66, turns out to 
be real (corresponding to the pure argument change of A, induced by the chiral 
rotation), and 6r can be interpreted as the summation of this change over all the 
eigenvalues. In the general case of a fermion field theory with axial gauge coupling, 
AZO,  the Dirac operator is non-Hermitian. In this case A, should be understood as 
a point in the complex plane, and 66, should be decomposed into real and imaginary 
parts in which only the real part is related to the pure argument change of A, induced 
by the chiral rotation. The real and imaginary parts of ST can be separated as 

with 

To obtain meaningful results from this infinite sum, a regularization procedure 
must be followed in order to suppress the contributions from high modes (Fujikawa 
1980). In the case of the non-Abelian gauge coupling, one must also impose the 
Wess-Zumino (wz) self-consistent condition in this procedure. As already explained 
by Alvarez-GaumC and Ginsparg (1984), the wz condition is a one-cocycle condition 
which simply implies that if the transformation is along an infinitesimal closed loop 
in the Lie algebra space of the gauge symmetry group, all the diagonal elements A, of 
the Dirac operator will also trace out a closed loop in the complex plane. One easily 
finds that the argument change of all the non-zero modes along this closed loop is 
zero, while the argument change of the zero mode is *27r, where the sign depends on 
the chirality of the zero mode. In the sense of keeping the non-trivial contributions of 
the zero modes within the constraint of the wz condition, we adopt the M-independent 
regularization scheme (Wang and Ni 1987) which is found to be particularly convenient 
in generalizing to the case of finite temperature, namely 
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Now denoting {a,,} and {q,,} as the orthonormal complete bases of the Hermitian 
operators (iD)'(iB) and ( iD)( iD)+,  respectively, one finds that although these bases 
are different from {&} and {cp,,} of the non-Hermitian Dirac operators ( i 0 )  and (iD)+, 
the subspaces spanned by the zero modes can be selected as the same. In the sense 
that only the contribution of the zero modes is preserved, one can change the bases 
by rewriting (8) as 

M 
= lim Tr [(ay,,,, - 

Y - x  

M * aY2n+1-  ( M + $  M indep 

In a detailed evaluation one can expand the trace in (9) in the following way: 

(9) 

where 

Q=$0-i2MAy2,,+,+i2k,D,. 

A similar procedure can be applied to the second trace in (9). The detailed evaluation 
of the trace in (10) is tedious but can be performed following a similar procedure to 
that in previous works (Gipson 1986, Wang and Ni 1987, Wang 1988). The result is 

in which 

Q* = Frvpru * F C u u p v  + ~ M A Y , ~ + I  
B ( m +  1, n + 1) = m ! n ! / ( m + n  + 1) U*" = [Yr, Yl,l/4 

while Sl? = 0. 

theory defined in arbitrary even dimensions. 
From (1 1) we can easily read off the self-consistent chiral anomaly of the fermion 
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Based on the above description, the proof of the temperature independence of the 
regularized self-consistent non-Abelian Jacobian becomes very straightforward. The 
main strategy in our proof is to separate out the finite temperature contributions in 
(10). In the case of finite temperature, T = P - '  # 0, the generating functional is 

z,(v, A)  = [ d$d$ exp( - J,' dx, [ d'"-lxlki0+). 

Here the path integral has to be defined over the space of functions with periodic or 
antiperiodic conditions imposed in the Euclidean time variable xo : 

+(XO+P,  x) = -44x0, XI $(XO+P, x) = -$(xo, x) A&l(xo+P, x) = A,(xo, x). 

Under an infinitesimal chiral transformation specified by an infinitesimal periodic 
function a ( x, + P, x) = CY (x,, x) the Jacobian factor induced is 

where 6 r ( p )  can be expressed as 

Almost the same procedure as used at zero temperature leads to the analogue of 
(9), namely 

Since r$n, (P,, and a,,, T,, are all antiperiodic, the Fourier representation of the 6 
function which was obtained via the completeness relation of a set of eigenfunctions 
should be understood as 

( 2 ~ ) - ' ~ " - ' )  [ dzn-'k exp(-ik(x-y)). (15) 

Therefore, the expansion of the first trace in (14) becomes 

Y - X  
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where 

w, = (2n + 1)np-I EM = k 2 +  M 2  

Q(w, )  = J % 3 - i 2 M A ~ ~ , + ~ + i 2 k D - i 2 w , D ~  

~ ( w ,  ) = ( M + iw, yo - i ky  - & ~ ' ( w ,  ). 17c) 

The sum over the Fermi-Dirac frequency in (16) can be treated as follows. First, 
one notices that the odd part of G ( w , )  does not contribute after summation over n, 
while the even part of G ( w , )  can be expanded as 

= 1 -- ( -W(  a )'-' b' (18)  
( u2 + x2)-l+I O G r G l + l  (aZ+x2)- '  O s , G l + l  ( s - l ) !  ax2 

where the b, are x-independent coefficients. By rewriting, 

G ( x ) ~ " ~ "  b S  = c  

+OD 

p-I G ( ~ , ) (  E', + 
,=--a) 

and applying the formula 

1 +X 

n = - m  

one finds 

Here the equality (18 )  is used, and the fact that the integral relating to the odd part 
of G (  k,) does not contribute is also noticed. 

Thus the trace shown in (16) at finite temperature is divided into two parts, namely 

d2"-'k 1 ~ ( 2 )  (- 1y-1 a s - l  (L-). bs I o s s s i + i  ( s - l ) !  aE EM ePE" + 1 
-p-1(27)-(zn-l) 
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The first part is an integral which takes the same form as that at zero temperature as 
shown in (10). The second part contains the terms arising from finite-temperature 
effects. By expanding 

one finds that every term in the second part is M dependent and does not contribute 
to the anomaly after M-independent regularization. The same procedure can be applied 
to the second trace in (14) and yields the same conclusion. Therefore we have proved 
that the regularized self-consistent non-Abelian chiral Jacobian factor 8 r Y g  at finite 
temperature coincides with the one at zero temperature. 

Note that in the evaluation of the regularized chiral Jacobian factor one can also 
take the large-M limit instead of using the M-independent regularization procedure. 
In the large-M limit, the second term of ( 2 2 )  is exponentially small and 6rTg remains 
the same as at zero temperature. This means that the M-independent regularization 
is equivalent to that of the large-M limit in the sense of evaluating SrY8 which is the 
self-consistency ‘abnormal parity’ contribution to the anomaly (i.e. the terms with 
antisymmetric symbol E ~ , ~ ~ , , , ~ ~ ~ ~  after taking the trace of y matrices (Hu er a1 1984)). 
But in the evaluation of ST?, the result using the large-M limit procedure does not 
vanish; one easily finds that it is M dependent and also temperature dependent. It 
will lead to the ‘normal parity naive anomaly’ contributions (i.e. the terms without the 
antisymmetric symbol E,+, v l , . . F , f , J ,  which terms can be subtracted by adding the counter- 
terms in the original Lagrangian (Fujikawa 1985). Therefore in the proof of the 
temperature independence of non-Abelian chiral anomaly in a theory with axial gauge 
coupling, one should first separate out ST- ,  the ‘normal parity contributions’, from 
the exponential of the Jacobian factor before taking the large-M limit in the regulariz- 
ation procedure (or equivalently the small-t limit in the paper of Liu and Ni (1988)). 

Furthermore, since the trace of an odd number of y matrices is zero, one has the 
equality 

This implies that the regulator chosen here is of the Pauli-Villars type, which is a 
particular form of the f ( D 2 / M 2 )  and f ( $ ” / M 2 )  suggested by Fujikawa. Since the 
result of STYg is independent of the detailed form of the regulator f ( D 2 / M 2 )  and 
f( D2/ M’), the temperature independence of S r Y g  can also be proved by inserting any 
regulator which satisfies the condition f ( 0 )  = 1, f ’ ( m )  =f”(m) = . . . = 0 (Fujikawa 1980, 
1985). 
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